q-Floor Diagrams computing Refined Severi Degrees for Plane Curves
نویسنده
چکیده
The Severi degree is the degree of the Severi variety parametrizing plane curves of degree d with δ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable q, which are conjecturally equal, for large d. At q = 1, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description of the refined Severi degrees, in terms of a q-analog count of Brugallé and Mikhalkin’s floor diagrams. Our description implies that, for fixed δ, the refined Severi degrees are polynomials in d and q, for large d. As a consequence, we show that, for δ ≤ 4 and all d, both refinements of Göttsche and Shende agree and equal our q-count of floor diagrams. Résumé. Le degré de Severi est le degré de la variété de Severi paramétrisant les courbes planes de degré d à δ noeuds. Récemment, Göttsche et Shende ont donné deux raffinements des degrés de Severi, polynomiaux en la variable q, qui sont conjecturalement égaux pour d assez grand. Pour q = 1, un des ces raffinements, le degré de Severi relatif, se spécialise en le degré de Severi (non relatif). Nous donnons une description combinatoire des degrés de Severi raffinés, en fonction d’un comptage q-analogue des “floor diagrams” de Brugallé et Mikhalkin. Notre decription implique que, pour δ fixé, les degrés de Severi raffinés sont polynomiaux en d et q, pour d grand. On montre que, par conséquent, pour δ ≤ 4 et pour tout d, les deux raffinements de Göttsche et Shende coı̈ncident et sont égaux à notre q-analogue de “floor diagrams”.
منابع مشابه
Universal Polynomials for Severi Degrees of Toric Surfaces
The Severi variety parameterizes plane curves of degree d with δ nodes. Its degree is called the Severi degree. For large enough d, the Severi degrees coincide with the Gromov-Witten invariants of CP. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed δ, Severi degrees are eventually polynomial in d. In this paper, we study the Severi varieties corresponding to a large family ...
متن کاملCounting Curves of Any Genus on Rational Ruled Surfaces
In this paper we study the geometry of the Severi varieties parametrizing curves on the rational ruled surface Fn. We compute the number of such curves through the appropriate number of fixed general points on Fn (Theorem 1.1), and the number of such curves which are irreducible (Theorem 1.3). These numbers are known as Severi degrees; they are the degrees of unions of components of the Hilbert...
متن کاملRelative node polynomials for plane curves
We generalize the recent work of S. Fomin and G. Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d , provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves that, in addition, satisfy tangency conditions of given orders wit...
متن کاملLinear Sections of the Severi Variety and Moduli of Curves
We study the Severi variety Vd,g of plane curves of degree d and geometric genus g. Corresponding to every such variety, there is a one-parameter family of genus g stable curves whose numerical invariants we compute. Building on the work of Caporaso and Harris, we derive a recursive formula for the degrees of the Hodge bundle on the families in question. For d large enough, these families induc...
متن کاملEnumerative Geometry of Plane Curves of Low Genus
We collect various known results (about plane curves and the moduli space of stable maps) to derive new recursive formulas enumerating low genus plane curves of any degree with various behaviors. Recursive formulas are given for the characteristic numbers of rational plane curves, elliptic plane curves, and elliptic plane curves with fixed complex structure. Recursions are also given for the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012